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The motions of fluid particles within and around a mass of hot, buoyant material 
(a thermal) rising through an extremely viscous, unbounded environment are 
computed using a simple kinematic model. The model is based on a similarity solution 
by Griffiths (1986~) and allows for growth of thermals due to outward diffusion of 
heat. Particle motions are also computed for the case of a non-expanding, isothermal 
sphere, such as a bubble of relatively low-viscosity fluid, in Stokes flow. Motions 
induced in the surroundings lead to large vertical displacements: the ‘total drift’ 
function and hydrodynamic mass corresponding to those defined for the inviscid case 
by Darwin (1953) and Lighthill (1956) are infinite in this unbounded geometry. 
Rotation of initially horizontal fluid elements (strain) in the surroundings is 
discussed. 

All material lying within an expanding thermal becomes confined at later times to 
a torus (dye ring) if the Rayleigh number for the thermal is large, to a central tapered 
blob if Ra < 50, or to an umbrella-shaped cap with narrow stem if Ra takes inter- 
mediate values. The ‘mushroom ’ shape widely observed for tracers within laminar 
elements in thermal convection is predicted for intermediate-to-large Rayleigh 
numbers. Buoyancy and heat, on the other hand, are assumed to remain evenly 
distributed throughout an enlarging sphere. Laboratory experiments illustrate and 
confirm the predictions of the model. 

1. Introduction 
Injection of a fixed quantity of heat, or of a volume of hot fluid, into an otherwise 

uniform viscous fluid leads to buoyant convection that is characterized by a small 
Reynolds number (Re 4 1) when the ambient viscosity is large or the injected 
buoyancy small. In laboratory experiments Griffiths (1986 a), hereafter referred to 
as I, showed that for small Reynolds numbers the buoyant material always forms 
an approximately spherical thermal which rises at  Stokes’ terminal velocity. Using 
this velocity, the Reynolds number Re = UD/v,, (where U is the translation speed, 
D is the sphere diameter and v ,  is the ambient kinematic viscosity) may be written 
in terms of the total buoyancy B = g A p V / p ,  ( V  the sphere volume, Ap the density 
difference and g the gravitational acceleration), so that Re = B / ~ A v ~ , .  A second 
parameter describing the flow is the Rayleigh number Ra = B/Kv,,  where K is the 
diffusivity for heat. Then the flow has small Reynolds number if Ra 4 2xPr, where 
Pr = V , / K  is the Prandtl number for the surrounding fluid. 

As thermals rise they enlarge as a result of outward diffusion of heat and associated 
buoyancy. If the advective timescale is long compared to the diffusive timescale 
(Ra + I ) ,  heat diffuses radially in all directions until the thermal anomaly is 



140 R. W .  Crifiths 

dissipated (Morton 1960). If the advective timescale is small compared to that for 
diffusion (Ra l),  the outer edge of the thermal is a thin boundary layer containing 
newly heated material from the surroundings (I). This boundary-layer material is hot 
and buoyant and therefore takes part in the rising motion. It was argued in I that 
almost all of the heated material will be incorporated into the thermal, implying that 
thermals entrain mass while conserving their buoyancy in the same manner as 
turbulent inviscid thermals (Scorer 1957, 1978 ; Turner 1957, 1973). Conservation of 
buoyancy and an assumption of self-similar flow lead to the prediction that thermals 
will expand linearly with distance travelled : D - Do = 242 - zo),  where Do and zo are 
an initial diameter and position and the half-angle of expansion $ = tan-’ E is related 
to the Rayleigh number according to e-Ra-k Both the linear expansion and 
dependence of E on Ra were confirmed by laboratory experiments in the range 
250 < Ra < 25000. The semi-empirical expansion rate is 

E = (1.25 f 0.2) R u - ~  (1)  

As a thermal expands, the velocity decreases with time according to U - t f  so that 
the viscous drag can continue to balance the constant driving force. Expansion also 
implies that the initial buoyant fluid occupies only a fraction of the volume of the 
thermal at  later times. 

The displacements of fluid particles in low Reynolds-number flow are of interest. 
Particle motions determine the patterns into which passive tracers (dye or chemical 
heterogeneities) are shaped by thermal convectiofi or by the passage of buoyant 
bodies. Similarly, distortions (strain) in the viscous surroundings can be found by 
integrating relative motions through time. Such relative motions have not previously 
been discussed even for the case of steady isothermal Stokes flow past a rigid sphere 
or bubble of low-viscosity fluid. In a geological context, distortions are found within 
the layered rocks of the Earth’s crust adjacent to large intrusive masses of magma 
and salt domes (Ramberg 1981 ; Schwerdtner 1982). Furthermore, both non-expanding 
bodies and expanding convective elements must cause large displacements of the 
surrounding fluid in the direction of motion as a result of viscous drag. These 
displacements represent a stirring which, in the presence of molecular diffusion or 
externally imposed velocity shear, can contribute to vertical mixing. 

For the case of motion of a sphere through an inviscid fluid, Maxwell (1870), Darwin 
(1953)’ Lighthill (1956) and Yih (1985) discussed the displacement of fluid particles 
in the surroundings. Displacements can be described by a ‘total drift function’ that 
predicts a finite movement for particles initially lying a fmite distance off the axis 
of motion as the body is displaced through an infinite distance. The drift function 
leads to a finite drift mass, which by Darwin’s theorem is equal to the added mass, 
the difference between the virtual (hydrodynamic) mass and the real mass of the body. 
These quantities are finite as a result of the rapid decrease of irrotational velocities 
with distance from the sphere. For expanding inviscid thermals, Turner (1964) 
investigated the motions of fluid particles both inside and outside the rising mass of 
well-mixed buoyant fluid. The flow outside the thermal at any instant in time was 
taken to be identical to potential flow about a solid sphere translating at an arbitrary 
constant velocity. Flow inside the thermal was assumed to take the form of Hill’s 
spherical vortex, with inner and outer velocities matched at  the edge of the thermal. 
Entrainment causes a slow enlargement of the radius of the sphere, a time-dependence 
that was incorporated into numerical integrations of particle velocities to find particle 
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paths. Some particles initially far ahead of the thermal then enter the spherical 
vortex. For small rates of expansion, these particles lie within a cone ahead of the 
thermal and symmetric about the axis of motion. If the half angle of expansion 
exceeds a critical value all of the surrounding fluid is eventually incorporated into 
the sphere. At all angles of expansion the total drift of particles is infinite. 

A kinematic model, similar to that formulated by Turner (1964) for the inviscid 
case, is presented here for motions induced by expanding extremely viscous thermals. 
The model relies to some extent on the dynamical model in I. Particle paths and 
distortions of passive material surfaces in the environment are predicted, and 
compared where possible with those observed in laboratory experiments in which 
isolated thermals are produced. Corresponding exact results for a non-expanding 
isothermal sphere (which may be rigid or simply a fluid of different intrinsic density) 
in Stokes flow are also presented. Some of the experiments shown are taken from 
among those discussed in I ,  while others are additional runs using the same apparatus 
and techniques. 

2. Relative motion about a viscous thermal 
Only thermals with large Rayleigh numbers (Ra 9 1) and extremely small Reynolds 

numbers (Re 4 1) are considered, and we recall from I that under this condition 
diffusion of heat maintains a thin thermal boundary layer in the surrounding fluid. 
We assume that all the material entering the thermal boundary layer is entrained 
into the thermal and that the combination of circulation and diffusion maintains a 
uniform temperature (and viscosity) throughout the buoyant fluid. In  its steady or 
only very slowly varying form, it is assumed here that the buoyant fluid maintains 
a spherical shape, as this appears to be the only steady solution for creeping flow 
(Kojima, Hinch & Acrivos 1984) and is that observed in the experiments (I). 

Since thermals expand only slowly in time the streamfunction for flow around a 
thermal is given by the steady flow about a non-expanding sphere. This argument 
becomes exact when the Reynolds number is small, since time dependent terms in 
the momentum equation vanish. In a spherical polar coordinate system moving with 
the centre of the thermal the boundary of the buoyant fluid is placed at r = a ,  with 
B = 0 the (vertical) direction of motion. The stream function for flow outside the 
thermal is given by 

and the circulation inside the thermal is given by the spherical vortex 

where $ is Stokes streamfunction, ,u is the dynamic viscosity (assumed uniform in 
each domain), and subscripts 1 and 2 refer to the inner and outer regions, respectively 
(Lamb 1932). The velocity at r = a is continuous. No assumption about the form of 
the interior flow is needed, other than that the flow there is laminar, contains no 
significant density differences, and that the velocity and stress are continuous a t  the 
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spherical interface?. From (2) and (3) the instantaneous velocity components for a 
fluid particle become 

The similarity solution and experimental results in I show that the radius a, the 
height of rise z above a virtual origin z = 0, and velocity U of a thermal obey the 
forms 

a = e z ,  z = m d ,  U = + n t f ,  

where t is the time since the thermal was centred at  the virtual origin, s and m are 
constants, and (as in 1) e is the tangent of the half angle of spread. Note that a = 0 
at the virtual origin. 

In  order to explicitly include the time dependence of the flow and to calculate the 
paths of fluid particles or tracers relative to the thermal, the motion can be 
transformed into a coordinate system that is both at rest relative to the centre of 
the sphere (as in (2)-(5)) and expanding with the radius of the sphere. A dimensionless 
radius in this coordinate system, using (6), is 

r r  
?l=,=a. (7) 

Substituting (7) into (4) and (5 ) ,  with v, = dr/dt, vg = rde/dt and U as given by (6), 
yields the particle velocities 

(9) 

J ' '  

The radial velocities in (8) and (9) are a superposition of a radial flow toward a 
sink at the origin and the radial component of flow about a non-expanding sphere, 
adjusted to account for the fact that a constant velocity in non-expanding coordinates 
corresponds to a continuously decreasing velocity in the enlarging system. As well 
as the viscous terms, the factor of 2 in the denominators of (8) and (9) does not appear 

t In the turbulent inviscid case the form of the spherical vortex must be assumed. In that c a w ,  
the stream function for the exterior irrotational flow includes only the last two terms inside the 
brackets in (2). 
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in Turner’s (1964) relations for the inviscid case because he assumed a constant 
velocity U = 1 : his velocities in the expanding frame are halved when the time- 
dependence of the translation speed (U - t-+) is included. 

A particle can be followed through time and space, starting from any chosen initial 
position (qo,flo,to), by integrating either set (8) or (9) of two coupled first-order 
differential equations, depending on whether the particle lies inside or outside the 
boundary vj = 1. If the particle passes through 7 = 1 the integration must change to 
the opposite set, beginning with initial conditions provided by the final values from 
the previous integration to q = 1. 

For the case E = 0, the sphere is not expanding and the flow is truly steady. Particle 
paths are then streamlines in the non-expanding coordinates, lines of constant @given 
by (2) and (3). Particle positions can then be found as functions of time by numerically 
integrating (4) and (5).  

3. Numerical solutions 
3.1. Presentation of results 

In order to  construct the pattern of particle motions relative to an expanding sphere, 
(8) and (9) were integrated for a number of initial conditions, giving the paths of a 
number of particles. Because the flow is weakly dependent on the ratio of viscosities, 
the two cases pJp2 = 1 and p1/p2 = 0 were selected for study. The latter case is of 
interest because most fluids with very large Prandtl numbers are also characterized 
by strongly temperature-dependent viscosities : fluid inside a hot thermal often has 
p1 4 pa. The same limit is also relevant for non-expanding isothermal spheres 
(bubbles) in which a large viscosity difference is often associated with the compositional 
difference that drives the motion. Results forpl/p2+ 00 (a rigid sphere) are not shown 
here but are not greatly different from those for p1 = pa. The model for expanding 
thermals is not valid when pl % p2 because the heated boundary layer cannot enter 
the slow or stagnant spherical vortex, and must instead accumulate behind the 
thermal, destroying the spherical geometry. 

Figures 1, 2 and 3 show the results for expansion rates of E = 0.03; 0.10 and 0.24, 
respectively. These values of E are chosen as strategic values illustrating the possible 
flow regimes. For each particle, integration began at (zo,yo) and to = 1, where the 
rectangular Coordinates (2, y) have z = 0 on the vertical axis of motion and y = 0 on 
the horizontal plane through the centre of the sphere. The top of each figure 
corresponds to the chosen value of yo in sphere radii (yo = 5) .  However, the computed 
paths show a negligible dependence on yo of the computed paths once yo 3 10, and 
only small variations for yo 2 5. The paths of selected particles are plotted on the 
right-hand side of each figure, with dots showing time intervals that are of equal 
length on a square-root scale. Thus two adjacent dots near the beginning of a trajectory 
show a time interval much shorter than that between two dots near the end of the 
trajectory. On the left side of each figure, a similar integration was carried out for 
a large number of particles (typically 500) initially distributed along y = yo, and their 
positions at chosen times connected to show the successive shapes of a material 
surface. Only for the largest expansion rate does the virtual origin lie within the area 
shown (figure 3). The virtual origin is the point in space at which the expanding 
thermal is to be found when its diameter is zero, and is the point toward which all 
particle paths far from the thermal are directed in our expanding coordinate frame. 
If we consider all fluid below an initially horizontal material surface to be tagged with 
a tracer such as dye, then the area in which that tracer is found at  large times (long 
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FIGURE I (a, b ) .  For caption see facing page. 
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after the thermal passes through the initial level of the surface) is that shaded on 
figures 1 ,  2 and 3. 

Figure 4 shows particle trajectories and distortions of material surfaces for a 
non-expanding sphere with pJp2 = 0. Since the sphere in this case travels at  a 
constant terminal velocity U ,  dots on each path show ten eqml intervals of time, and 
the material surface is shown at times 2.5a/U apart. 

3.2. Stagnation points 
The shapes of particle paths are dependent upon the location of stagnation points. 
There are, in general, one stagnation point and a stagnation circle inside an expanding 
sphere. From (9) both radial and azimuthal velocities vanish at 7 = 0 when E = 00, 

which is the trivial case of no motion in the non-expanding reference frame, resulting 
from an infinite exterior viscosity or infinitely rapid diffusion of heat away from the 
sphere. The azimuthal velocity also vanishes at 6 = 0, x and a t  7 = l / d 2 .  The radial 
velocity is zero when 

~ r - + ( l  -v2) k COSO = 0, (10) 

where k = p2/(p2+pl) .  Solving the quadratic (10) at 6 = 0 implies a stagnation 
point at 

where only the positive sign is meaningful; the negative sign yields negative values 
of 7. Hence the forward stagnation point (see figures 1 4 )  lies between = 1 for E = 0 
and 7+0 for €+a. When 6 = x ,  the solution to (10) for all E > 0 gives 7 > 1,  a 
domain in which the interior streamfunction is not valid. 

On the surface 7 = 1/2/2, where d6/dt = 0, (10) predicts a circular stagnation 
line at 

In  the non-expanding case ( E  = 0), this circle lies on the horizontal plane through the 
centre of the sphere (6 = +in). At finite expansion rates the stagnation circle (12) 
lies farther toward the front of the thermal. This position also lies farther forward 
for larger viscosity ratios. At a well-defined value of E the circle coalesces with the 
forward axial stagnation point (11) :  the stagnation circle exists only for 
E: < [242(1 +p1/p2)]- ' .  This critical expansion ratio is E* x 0.354 when ,ul/p2 = 0 
and e* x 0.177 when p1/p2 = I t .  

t The corresponding condition in the inviscid caae can be shown to be 6 < 3/2.\/2 = 1.061. 

FIGURE 1. (a) Particle motions, plotted in the expanding coordinate frame, relative to an expanding 
spherical vortex with 6 = 0.03 and pJpz = 0. Vertical and horizontal scales are in sphere radii. 
Particles have yo = 5 a t  the time to = 1, and paths on the right-hand side are shown up to t = 3.0, 
with dots at  equal intervals in t f .  Material surfaces are drawn on the left for the times shown, again 
starting at  yo = 5 at to = 1. Crosses show stagnation points in the expanding coordinate system. 
Dotted line is the surface of the sphere. Broken line is the axis of symmetry. Stippled region is that 
in which fluid initially below the horizontal material surface is found a t  t = 3.0, and is approximately 
the region in which the injected dyed fluid will be found in the experiments. (b) As for (a) but for 
6 = 0.03 and pJpz = 1. Particle paths on the right are shown up to time t = 5.0. Stippled region 
is aa in (a) but for t = 5. 
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RUURE 2. (a) Particle motions in the expanding coordinate system for an expanding sphere with 
E = 0.10 and pJpZ = 0. Initial conditions for each particle are yo = 5, to = 1 and q, aa seen by the 
positions of particles at the top of the figure. Paths are shown up to t = 20, and the stippled region 
is for t = 20. Other details are as in figure 1 (a). (a) As for (a) but for E = 0.10 and pJpZ = 1. Particle 
paths and material surfaces are computed up to t = 50. 
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Stagnation points outside the sphere are found by setting dq/dt = de/dt = 0 in (8). 
Here, d8/dt = 0 only at 8 = 0, n. For 8 = 0 the radial velocity vanishes only at 
7 = 1, e = 0. For 8 = n, the radial velocity vanishes at the roots of the quartic 

Numerical solution of (13) shows that for small values of e,  there are two roots at 
9 2 1. These are plotted on figure 5 for the two cases p l / p z  = 0,1,  along with the 
position of the virtual origin. Since e is the tangent of the half-angle of spread, the 
virtual origin lies at y = - l /e,  where y is the vertical coordinate in sphere radii 
relative to the centre of the sphere. A t  e = 0 there is only one stagnation point behind 
the thermal : at y = - 1. For e > 0, this stagnation point lies a small distance behind 
the sphere and a second lies above the virtual origin. If no sphere was present in the 
flow, particle velocities in the expanding coordinate system would approach zero at 
the virtual origin. However, the presence of a sphere decreases the downward 
velocities everywhere below the sphere, causing the axial velocity to vanish at a new 
stagnation point above the virtual origin. Close to the virtual origin, particles move 
toward the sphere. At large values of e,  the two rear stagnation points approach each 
other until they coalesce at E = e’(pl/p,). There are no stagnation points behind the 
sphere for e > e‘, implying that flow is everywhere directed toward the sphere and 
that all of the surroundings eventually enter the spherical vortex. For p1/p2 = 0, 
e’ = 0.251, and for p l / p 2  = 1, e‘ = 0.207t. 

t The corresponding value for the inviscid case is e’ = 0.47 (Turner 1964). 
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FIGURE 4. Particle paths and positions of a material surface relative to a sphere aa computed from 
the exact solution for Stokes flow about a non-expanding sphere ( E  = 0). Initial conditions for each 
integration were yo = 10, to = 0. Dots on particle paths show equal intervals in time and times for 
material lines are shown in units of a/U.  The displacements of material lines at z = 1151 from their 
initial positions in a stationary reference frame are shown by the mismatch with the scale on the 
vertical axis (e.g. at a /U = 20, the displacement is 0 . 7 ~ ) .  Crosses show stagnation points for 
the flow. 

3.3. Implications of particle paths 
Far ahead of an expanding spherical vortex, particles move in straight lines toward 
the virtual origin, as they would if no sphere were present. Their paths subtend an 
angle /3 to the vertical, where tan/? = ezo/(~y0+ 1). However, the straight paths are 
disturbed as particles approach the sphere. Those close to the axis enter the spherical 
vortex, while particles farther from the axis are slowed down but continue on toward 
the virtual origin. The path dividing those that enter from those that do not 
approaches the first rear stagnation point, and this dividing path subtends a larger 
angle B* to the axis for larger expansion ratios B (figures 1 4 ) .  In  other words, particles 
destined to enter the sphere originate within a cone whose vertex is the virtual origin. 
The half-angle /I* of the cone of entrainment, along with the corresponding values 
computed by Turner (1964) for the inviscid case, is plotted on figure 6. For E < 0.1, 
the numerical results are consistent with tan/?* x be1.", where b x 4.0 for p1/,uL2 = 0 
and b x 4.7 for pJp2 = 1. Thus for small expansion ratios the cone of material 
destined to be incorporated into a thermal subtends a smaller angle at the virtual 
origin than does the thermal itself (tan/3* < 8 ) .  This is possible simply because the 
sphere, for small B, must at any time contain a volume approximately equal to the 
volume of the entrainment cone between the virtual origin and the level of the sphere. 
On the other hand, for large E much of the mass in the entrainment cone at levels 
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FIGURE 5. The position (in sphere radii) of axial stagnation points behind expanding spheres with 
pJpZ = 0 (solid line) and pl/pe = 1 (broken line) as functions of the expansion ratio. The dotted 
curve shows the position of the virtual origin. Upper and lower branches of each curve correspond 
to two stagnation points that approach each other as 8 increases, coalescing at the position shown 
with a dot. 

8 

below the sphere at a given time has not entered the sphere, though it will do so 
eventually . 

Comparison of the particle motions on figures 1 4  shows that particles take longer 
to reach the sphere, and the overturning time for the spherical vortex is longer, for 
larger expansion ratios and larger viscosity ratios (for which the sphere velocity U 
decreases more rapidly). Distortion of material surfaces becomes significant in all 
cases once the surface has been advected to within about three radii from the centre 
of the sphere. Surfaces stretch as they move past the sphere, and become wrapped 
around in the spherical vortex. Behind the sphere they form a large funnel that 
represents the total vertical displacement of fluid particles in the environment 

Within the spherical vortex for small expansion ratios (figure l) ,  the entrained 
material surfaces eventually form the outline of a torus or dye ring, a thin cap over 
the forward edge of the sphere, and a thin vertical stem along the axis behind the 
thermal. The dye ring decreases in sectional area with time in order to maintain a 
constant volume (in non-expanding coordinates) as the sphere expands. The radius 
of the dye ring as measured normal to the axis is a smaller fraction of the sphere radius 
at larger expansion ratios and viscosity ratios, for which the interior stagnation circle 
lies farther forward. Ate  = 0.1 and pJpZ = 1 (figure 2b) ,  on the other hand, material 
lines remain in the shape of an umbrella at large times: circulation within the 
spherical vortex is slow when compared to the rate of inflow due to expansion of the 
sphere. Qualitatively similar particle motions, again giving the thin umbrella shape 
to material surfaces, are obtained at B = 0.20, p1/p2 = 0. When 8 is so large that there 

(see §4)* 
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FIGURE 6. The angle p* subtended at the axis by the dividing particle path far ahead of the thermal 
in the expanding coordinate frame, as a function of expansion rate for pJp2 = 0 (solid curve) and 
pJp2 = 1 (dashed curve). Longest vertical lines at the top of the figure indicate corresponding values 
of e above which there is no interior circulation about a stagnation circle. Short vertical lines are 
values of e to which the curves asymptote and above which there are no rear stagnation points 
(p*+ 00). The dotted curves show Turner's (1964) results for inviscid thermals. 
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is no closed circulation at all within the sphere in expanding coordinates (figure 3), 
neither the dye ring nor the umbrella cap are formed: the material surfaces then 
outline, at large times, a tapered compact blob. When E is greater than both E' and 
E* all particle paths approach the single stagnation point on the axis a short distance 
above the centre of the sphere. 

4. Strain and mass transport in the environment 

exterior streamfunction (2) for Stokes flow becomes 
In a non-expanding coordinate system at rest in the fluid far from the sphere, the 

Velocities decay as r-l ,  where r is the distance from the centre of the sphere. Hence, 
integration over time of the vertical component of velocity for a given fluid particle 
during the passage of a sphere (whether expanding or not) gives an unbounded 
displacement. Equivalently, the distortion of material surfaces as shown in 
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FIGURE 7. Displacements of fluid particles relative to axes (d, y') at rest during the pwsage of a 
non-expanding sphere with pJpS = 0. Particles initially lay on a horizontal line through the axis 
of motion and ten radii ahead of the sphere (y' = 0, yo = 10). Scales are in sphere radii. Dots show 
particle positions at the times corresponding to the dots in figure 4. Broken lines connecting 
simultaneous positions correspond to the material lines of figure 4. Displacements are unbounded 
in time. 

figures 1 4  does not asymptote toward a well-defined 'total drift function', and the 
drift mass (found from the volume under the drift curve) is infinite. Similarly, the mass 
flux through any horizontal plane, 2np$-,(r+ a), and the added-mass ma, defined as 

(where D is the unbounded domain outside the sphere and v,.,ve are velocity 
components relative to a coordinate frame at rest), are infinite. These results are 
obvious but emphasize the magnitude of vertical mass transport induced in viscous 
fluids by the passage of rigid bodies and bubbles, as well as expanding thermals with 
small Reynolds numbers. 

Particle positions relative to the coordinate frame at rest for a non-expanding 
sphere with pJp2 = 0 are plotted in figure 7. Similar computations of displacements 
induced by expanding thermals show larger displacements at large times as a result 
of the increasing sphere radius. At large distances from the axis, vertical displacements 
(Q) decay only slowly with distance ( -  x-l). On the other hand, the strain (M/ax) 
decreases more rapidly ( -  x - ~ ) .  Rather than computing the strain induced in a given 
material surface (such as in figure 7) as a function of x and t ,  it is of interest to consider 
a horizontal plane and find the angle between this plane and all intersecting material 
surfaces that, a t  a given instant in time, have experienced various degrees of 
distortion (as in figure 4), as though we are looking at a geological structure in which 
strata have been deformed by a rising spherical mass and then eroded to a horizontal 
plane. Results are plotted on figure 8 for levels at the top of the sphere (y = l),  the 
centre (y = 0), and the bottom (y = - 1). At y = 0, the strain angle decreases from 
90" at 2 = 1 to 45' at 2 x 1.6. The corresponding curves at y = 1 and y = 0 for 
expanding spheres are little different from those shown. 
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FIGURE 8. The strain angle, tan-' (a&/as), as a function of distance in sphere radii normal to the 
axis of motion, on the three horizontal planes y = 1 (-.--), y = 0 (through the centre of the sphere, 
-) and y = - 1 (----). These results are for a sphere of constant radius. 

5. Experimental results 
Comparison with the predicted particle motions are provided by laboratory 

experiments in which hot high-viscosity oil is injected into a large tank of the same 
oil at room temperature. The experiments were described in I, where the dynamics 
and motion of the thermals were investigated. Here, the distortion of horizontal dye 
lines in the tank, and the shapes into which the dyed injected fluid is moulded, are 
the properties of interest. Additional experiments were carried out in order to extend 
to smaller Rayleigh numbers the parameter range covered. 

5.1. Conversion of expansion ratio to Rayleigh number 
The semi-empirical relationship (1) can be used to place the computed flow regimes 
in terms of the Rayleigh number of thermals. Although the dependence of e on Ra 
was confirmed by experiment only in the range 250 < Ra < 25000, i t s  form was 
predicted by a similarity solution for all Ra 9 1. Hence, we assume (cautiously) that 
(1) holds for Ra > 10. Then the numerical results in figures 1, 2 and 3 correspond 
to Ra x 1736, 156 and 27, respectively. Similarly, the Rayleigh numbers Ra' below 
which no rear stagnation points are predicted are Ra' = 24.8 for pJp2 = 0 and 
Ra' = 36.5 for pJp2 = 1. A closed interior circulation should not exist at Ra* < 12.5 
(,ul/,u2 = 0) or Ra* < 50 (,uJp2 = l),  while an obvious dye ring is predicted to form 
for all viscosity contrasts at Rayleigh numbers greater than about 200-300. 
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FIGURE 9. Photographs of three stages in the rise of a laboratory thermal in 'Hyvis 30' oil. Hot 
dyed oil (5 cms) was injected at the source and left to rise. Outer viscosity was 1.8 x 10' ,me s-l, 
AT, = 48.7 "C, Pr = 1.8 x lo", Ra = 80, Re = 7.1 x lo-''. For scale, the diameter of the dyed blob 
in the first frame is 2.1 cm. Dimensions of the tank of oil were 67 x 67 x 30 om deep. Frames were 
taken at times 120 s, 1260 8, and 3640 8 after injection. 

5.2. Shaping of dye within thermals 
The smallest Rayleigh number achieved in the experiments is Ra = 80 (with a 
Reynolds number Re = 7.1 x In  this case (figure 9), the injected hot fluid 
containing dye rose away from the source at the base of the tank as a tapered blob. 
It remained as a compact tear-drop at large times, with a narrow stem that continued 
to stretch and thin with time. In this case, the heat is expected to be contained in 
a spherical volume much greater than the dyed blob. The base of the tank is likely 
to influence such thermals as they require a very long time to distance themselves 
from their source. The expansion rate given by (1)  is E X  0.14. Although the 
temperature difference was initially 48 "C (andpJp, x 0.026), the similarity solution 
in I predicts that this will have decreased to 5 "C (pl/p2 x 0.7) once the thermal has 
risen a distance of three initial diameters. Hence the expansion rate is only slightly 
smaller than the value ( E  x 0.18) above which no interior recirculation is predicted. 
The very long time required for material surfaces to approach their final shape under 
these conditions (see figures 2(b), 3) as well as an unknown initial period of 
adjustment towards self-similar flow must also be considered. However, the compact 
tapered dye blob is consistent with the kinematic model. 

A t  a Rayleigh number B a =  182 (ex0.093), the injected dye forms a thin 
umbrella-shaped cap (figure 10). Most of the dyed fluid is confined to a torus with 
thin, elongated and inclined cross-section. This shape compares well with that 
predicted for E x 0.1, pJp2 x 1 (figure 2b).  At a Rayleigh number Ra = 312 
(8  x 0.07), the axisymrnetric torus of dyed fluid is a more obvious feature of the flow 
(figure 11)  and can be seen clearly in plan view (figure 12). The thin spherical cap, 
forward stagnation point, and thin axial stem of dye extending all the way to the 
source are all visible in these experiments. Note that the intermediate stages in the 
moulding of the dyed fluid shown in figures 9-11 result from an approximately 
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FIGURE 10. Photographs showing the shape into which dye is moulded in a thermal with 
V, = 11.2 om3, A% = 48.7 "C, Ra = 182 and Re = 1.6 x The fluid has a Prandtl number 
Pr = 1.8 x lo8. For scale, the diameter of the dyed blob in the first frame is 2.8 cm and the third 
frame is enlarged about three times. Container as in figure 9. Frames were taken at  times 425 s, 
1560 s, and 4800 s after injection. 

RGURE 11. Photographs showing the shape of dyed fluid in a thermal with V, = 20.5 cm3, 
A% = 48.7 "C, initial viscosity ratio ,ul/p2 = 0.024, Ra = 312, Re = 2 . 8 ~  in 'Hyvis 30'. 
Container m in figure 9. The dye blob in the first frame has diameter 3.5 cm. Photographs were 
taken at times 120 s, 600 s, and 1800 s after injection. 

self-similar evolution of the flow. The outline of the dye at intermediate to large times 
can therefore be compared to the computed shapes inside the spherical vortex of 
initially horizontal material surfaces : the differing initial conditions of a spherical 
surface intersecting the source and a planar surface above the thermal prevent 
comparison at only short times. 

At large Rayleigh numbers the dye ring is centred farther behind the forward 
stagnation point and its cross-section is elongated more nearly parallel to the axis 
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FIQURE 12. A plan view of the thermal in figure 11, taken 1200 s after injection. The dye ring and 
thin vertical stem can be seen. The source lies on the brtse of the tank beneath the centre of the 
ring. 

(figure 13). Lines of dye placed across the tank at various heights before injection 
of the thermals (see I) show a pattern of displacement of the environment entirely 
consistent with that computed from the model. On the other hand, quantitative 
comparison of the vertical transports is not possible because the dye lines could not 
be positioned to  pass precisely through the axis of motion for thermals (which 
generally do not follow an absolutely perfect vertical line from the source). Hence, 
dye lines generally do not meet the forward stagnation point and are advected around 
the near or far side of each thermal. They are therefore displaced slightly smaller 
distances than predicted by the numerical solutions. Some influence of the finite width 
of the tank (40 cm) is also detectable : dye lines 10-15 cm from the axis are advected 
a small distance downward during the rise of a thermal. 

Similar distortions of dye lines in the environment are seen for the case of 
isothermal, non-expanding bubbles of less dense oil (figure 14). Comparison with 
figure 4 shows that these observations too, are well described by computed shapes 
of material surfaces. Other experiments showing the displacement of marked 
horizontal surfaces (rather than lines) in non-diffusive Stokes flow are described by 
Ramberg (1981), who used putties of differing densities in a high-speed centrifuge. 
However, those flows were strongly influenced by the small depth of material used. 

6. Conclusions 
A simple kinematic model for the particle motions in and around an expanding 

thermal with small Reynolds number successfully predicts the shapes into which 
passive tracers are moulded by the flow. Both model predictions and laboratory 
observations of the rise of hot, dyed blobs in viscous oil show that injected dyed fluid 
remains as a compact blob with a tapering stem if the Rayleigh number is small 
(Ra < 80). At intermediate Rayleigh numbers (Ra - 100) the dye forms into a thin 

6 BLM 166 



156 R. W .  Grijiths 

FIGURE 13. Shadowgraph images of two thermals in 'Hyvis 3' oil, both with V, = 2.4 cm3, 
A E  = 70 "C, initial viscosity contrast pJpZ = 0.0125, Ra = 1.65 x los and Re = 1.8 x The 
Prandtl number is 1.2 x los. I n  the first frame a larger concentration of dye in the injected hot oil 
used to create the thermal makes visible the thin spherical cap and forward stagnation point. Most 
dye is confined to the dye ring at large times, shown when the cap is 33 cm above the source. Nearly 
horizontal dye lines in the second experiment (second-fourth frames) pass close to the axis of motion 
and are entrained into the thermal. A 5 cm square grid is drawn on the shadowgraph screen. 
Dimensions of container were 40 x 40 x 70 cm deep. 

mushroom- (or umbrella-) shaped cap and a thin axial stem. At  large Rayleigh 
numbers (Ra > 200) most of the dye is, at large enough times, confined to an 
axisymmetric torus or dye ring of ever-increasing radius and decreasing cross-sectional 
area. Buoyancy, on the other hand, is assumed to remain evenly distributed 
throughout an encompassing spherical volume that rises with Stokes terminal 
velocity. 
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FIQIJRE 14. Shadowgraph images of an isothermal, non-expanding bubble as it paases through 
pawive dye lines. hp = 0.0106 g cm-a, outer viscosity 90 cmB s-l, V = 11.3 oma, pl/pe = 0.09, 
Re = 2.0 x Container as in figure 13. Although the fluids are completely miscible and 
interfacial tension is negligible, the bubble does not entrain surrounding fluid and moves at a 
constant velocity. 

6-2 
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Although the model will not be quantitatively accurate for Reynolds numbers 
greater than one, it does explain previously observed distributions of passive tracers 
within laminar thermals with Re - 1 to 100. For example, an unstable thermal 
boundary layer above a heated horizontal plate gives rise to ‘mushroom-shaped’ 
thermals (Sparrow, Husar & Goldstein 1970). These’thermals must have Rayleigh 
numbers of order lo3 (the density anomaly and lengthscale being comparable to those 
of the marginally unstable boundary layer). They show clear evidence of recirculation 
within the thermal, while dye entering the convective element from the boundary 
layer appears to pass most of the distance around a spherical surface. Hence, the 
appearance of these thermals is consistent with that predicted for intermediate-to-large 
Rayleigh numbers, such as Ru - lo3. The model also can be applied to convective 
motions in the Earth’s mantle and crust, where motions are characterized by 
extremely small Reynolds numbers and where our results may help to predict the 
distribution of chemical composition within thermally-driven diapirs and their effects 
on the surrounding material. Large variations of viscosity with temperature are taken 
into account in the model. The results suggest that if masses of hot, buoyant material 
break away from an often-postulated unstable boundary layer at the base of the 
mantle then that hot source material (which may also be chemically or isotopically 
distinct) will become confined to a torus as it rises in a thermal. The torus should 
form in this case because the Rayleigh number for the thermals must be similar to 
that for the boundary layer and is therefore likely to be of order los. Each thermal 
will also cause a large amount of stirring in the fluid layer. This example is discussed 
in Griffiths (19863). 

An effectively non-diffusive flow on geological length- and timescales is motion 
driven by a compositional buoyancy, such as the ascension of salt domes. These are 
isothermal masses that push upward through the surrounding crust and deform the 
geological strata in a manner at least qualitatively similar to that predicted here for 
non-expanding spheres (Schwerdtner 1982 ; Ramberg 1981), though differences can 
be expected to result from the proximity of the free surface, and from effective 
viscosity variations with depth in the environment. The consequent doming of 
impermeable strata within the crust is of great practical importance as it forms traps 
for natural gas and oil reservoirs. Distortions, or strain, in the immediate surroundings 
of large granite intrusions called ‘ plutons ’, which are now exposed at the surface of 
the Earth’s crust, are also of interest, particularly if they can be used to infer details 
of the mechanism and conditions of emplacement. In  this case too the motion was 
driven predominantly by compositional buoyancy. However, the intruding material 
was also hot (probably molten) and diffusion of heat would have induced large 
viscosity variations in the surrounding rock. Large stresses could have further 
reduced the effective viscosity. Hence the strain, as given by the dip angle of strata, 
may be confined to a more narrow region at the edge of the buoyant material than 
is seen in figure 8. Particle motions have not been found for such a flow, though the 
velocity of a hot, compositionally buoyant and rigid sphere moving through a fluid 
with temperature-dependent viscosity has been investigated by Marsh & Kantha 
(1978), Morris (1982), Ribe (1983) and Marsh (1984). Similarly, solutions have not 
been found for the flow or particle motions about a sphere that is driven by both 
thermal (diffusing) and compositional (non-diffusing) buoyancies. Some aspects of the 
latter case are discussed in Griffiths (1986~). 

Mr R. Wylde-Browne is thanked for his assistance with preparation of photographs 
and figures. 
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